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1 Counting

See [Wei22b] and MathIsFun for more details.

1.1 Permutations

With repetition, the number of ordered arrangements ! of 7 objects into k slots is given by n*. Without repetition, the
number of ordered arrangements ? of n objects into k slots is given by (1.1.1).

n!
T (n-k)

n

Py (1.1.1)

1.2 Combinations

Without repetition, the number of (unordered) ways to choose k objects out of n objects ° is given by (1.2.1).

ny n!
k|~ kin-k)! (1.2.1)

1For example, the number of 3-digit numeric (base-10) passwords (1 = 10, k = 3)
2For example, the number of 3-digit numeric (base-10) passwords with distinct digits (n = 10, k = 3)
3For example, the number of ways to choose a team of 3 runners from 10 people (n =10, k =3)



https://www.mathsisfun.com/combinatorics/combinations-permutations.html

2 Probability

2.1 Expected value

Expected value*, denoted by E, can be thought of as a weighted average. It operates on random variables.
Arandom variable takes on a random value out of a set of values with specified probabilities. For example, let D be
the number that faces up when a fair six-sided die is rolled. Then D is a random variable that takes values {1,2, 3,4, 5, 6}
111111

with probabilities {5, 5885 5}. See mean_std.ipynb and helpers for more examples.

Definition 2.1.1: Expected value

Let X be a discrete random variable that takes values x; with probabilities p;. Its expected value is defined as

EX =) xip(x;) 2.1.1)
i

Problem 2.1.1: Gambling

Suppose I offer you the following game, in which you will roll a fair six-sided die. Would you play the game?
e Ifa6isrolled, you win $6.
e Ifa5isrolled, you win $3.
e Ifa4isrolled, you don't win or lose anything.

¢ Otherwise, you lose $4.

Solution. Let X = money gained or lost. Then EX = ¥, x; p(x;) = 6(%) +3(%) +0(%) —4(2) = —0.5. For a sufficiently
large number of games, there is an average loss per game of $0.50, so we don’t want to play. |

2.2 Inclusion-exclusion principle

Note that U denotes set union (similar to “or"). N denotes set intersection (similar to “and"). °

The inclusion-exclusion principle ® for two events A and B given in (2.2.1) holds whether A and B are mutually
exclusive or not. When they are mutually exclusive, P(AnB) = 0, so the probability that A or B occursis just P(A)+P(B).
When they are not mutually exclusive, then P(A) + P(B) doubly counts the intersection, so the intersection needs to
be subtracted. See Figure 1.

P(AuB)=P(A)+P(B)-P(AnB) (2.2.1)

A B

Figure 1: Inclusion exclusion principle

4More formally, expectation
5In Figure 1, AU B includes the blue and orange sections. An B is just the orange
6See this page for inclusion-example examples


https://gist.github.com/jesse-wei/a7e18d3156485dac471f1f238066cc96
https://gist.github.com/jesse-wei/886eb8bf4f36e77430c7358e85a5c1b5
https://brilliant.org/wiki/principle-of-inclusion-and-exclusion-pie/

3 Logarithms

See [Wei21b]. Topics covered are logarithm rules, practice problems, and solutions.

4 Matrices

See [Wei21a] for much more details. Topics covered are the definitions of addition and subtraction, scalar multiplica-
tion, matrix multiplication, and the determinant of a 2 x 2 matrix.

4.1 Multiplication

In the example shown in (4.1.1), the two matrices can be multiplied because their dimensions are of the form m x n
and n x p in this order. The resulting matrix has dimensions m x p. Note that matrix multiplication is not commutative

(AB # BA, usually).
a b ag+bh
c d (i): cg+dh 4.1.1)
e f eg+fh

The determinant is defined for square matrices only. On the ACT®, if you are asked to calculate a determinant, it will
be the determinant of a 2 x 2 matrix. Here is the formula.

4.2 Determinant

b

a
det(c d) =ad - bc 4.2.1)

5 Geometry

5.1 2D Point rotation

If it’s hard to remember (5.1.1), visualize a simple case that should be obvious: (10, 1) so°eew, (—1,10). Also, note that

(5.1.2) is equal to three applications of (5.1.1), and similar for (5.1.3).

(a,b) LY. (_p,a) (5.1.1)
(a,b) J0°Cw, (b,—a) (5.1.2)
(@b 2% (—a,-b) (5.1.3)
5.2 2D Point reflection
(a,b) X2 (q,~b) (5.2.1)
(a, ) X2 (—a,b) (5.2.2)

5.3 Vectors

Addition, subtraction, and scalar multiplication of vectors follow the definitions given in Section 4.
Graphical definitions of vector addition, subtraction, and scalar multiplication are also sometimes tested, so we
will discuss those using the example vectors & = (1,2) and U = (3,—4). 7

"Note that, following convention, i=(1,0) and j = (0, 1) so that i =i+ 2jand U = 3i—4j



5.3.1 Addition

The graphical representation of i + ¥ is shown in Figure 2. Draw ii with its tail at any position. ® Then draw 7 with its
tail at the tip of ii. ii + ¥ is now the vector that goes from the tail of i to the tip of .
See Figure 2.

<

<
<
+

<

Figure 2: ii + U = (4,-2)

5.3.2 Scalar multiplication

Graphically, a scalar “scales" a vector. If the scalar is negative, then the vector’s direction is flipped.’
See Figure 3.

8For ease of calculation, start at the origin. But recall that a vector can be anywhere on the 2D plane as long as its x and y components are the
right lengths
9See (5.1.3), the rule that describes how a point’s angle changes when its coordinates are negated



Figure 3: 27i = (2,4) and —ii = (-1,-2)



5.3.3 Subtraction

Now;, using Section 5.3.2, we can define graphical vector subtraction #i— ¥ as #i+ (— 7). Flip the direction of 7 and follow
the graphical addition procedure defined in Section 5.3.1.
See Figure 4.

<

<

Figure 4: ii — U = (-2,6)

5.3.4 Polar representation

Like points, 2D vectors can also be represented by a radius and an angle, and we can convert from polar representation
to Cartesian representation. '° Let A have radius A and make an angle of 8 with the positive x axis, as shown in Figure
5. Then by right angle trigonometry, its x and y components (or the components in the direction of i = (1,0) and
j=(0,1)) are given by Acosf and Asin6, respectively. !!

To convert from Cartesian representation to polar representation, use that r = /A% + A?, and the angle between
the x and y components is arctan(A, / Ay).

A word of caution: be very careful with which axis the angle is measured from. If you always measure 0 from the
positive x axis (using angles in the interval [0,360°)), then the x component will always be Acos6f and the y component
will always be Asin6.

However, especially in physics, it is not always convenient to measure angles from the positive x axis. In that case,
depending on which axis 8 is measured from, the above may not be true, and there may also be issues with sign.

When 6 is not measured from the positive x axis, it is the case that, relative to 8, Acos@ gives the magnitude of the
adjacent component and Asin# gives the magnitude of the opposite component.

Please practice this concept on Khan Academy. It is impossible to understand through text only.

10you generally want to do this when adding or subtracting vectors. You can't directly add vectors that don't have the same angle without convert-
ing to component form
HVerify this using cos6 = adjacent/hypotenuse and sinf = opposite/hypotenuse, where the hypotenuse is the vector A


https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf:vectors/x9e81a4f98389efdf:component-form/a/vector-component-form-no-direction-angle
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Figure 5: Polar and cartesian representations

5.4 Angles

The sum of the interior angles of an n-sided polygon is given by 180° (n — 2), and the sum of the exterior angles is 360°.

5.5 Area and volume formulas

In (5.5.1), the third formula is Heron’s formula. In that formula, s is the semiperimeter (a+ b+ c)/2, which is half of the
perimeter. You will most likely never need to use this. Also, note that Vgpe is % of Veylinder and Viectangular pyramid 18 % of

Vrectangular prism-

1 1
Atriangle = Ebh = EabSinC = \/s(s —-a)(s—Db)(s—c¢) (5.5.1)
Veylinder = nr’h (5.5.2)
1 2
Veone = 277 h (5.5.3)
1 1
Vtectangular pyramid = gBh = 3 lwh (5.5.4)

5.5.1 Unit conversions in higher dimensions
Note that Im = 100cm =% 1m3 = 100cm3.

3

Problem 5.5.1: m? to cm

How many cm? are in 1m3?

Solution. 1m® = (1m)(1m)(1m) = (100cm)(100cm)(100cm) = 1003cm3 = 1000000cm? ]



Visualize this by considering a 1m® cube. Each side length is then 1m. Converting to cm, V = lwh = (100cm)? =
1000000cm®.

5.6 Circle properties

Intercepted
Arc

Inscribed
Angle

1 —
LABC =3 AC

Calcworkshop.com

Figure 6: Inscribed angle theorem

5.7 Ellipse

The general equation of an ellipse 2 is given in (5.7.1). See (and play around with) this Desmos page to learn about
the major/minor axis, the parameters a and b, and how to calculate the positions of the foci of the ellipse.

12 R AY
(xh)+(yk):

P b2 1 (5.7.1)

5.8 Hyperbola

The general equation of a hyperbola is given in (5.8.1). Generally, the equation/graph of a hyperbola is very rarely
tested. When it is tested, it is usually possible to get by just with basic knowledge, but you can see this page for full
details.

(x-m? (y-k? _

P R (5.8.1)
6 Trigonometry
I hope you already know that in any right triangle, sinf = %, cosO = h;;(lﬁgilllltse’ tan@ = Zg}[;(():ilrtl(: Also (and not
necessarily in a right triangle), tanf = %_

6.1 Graphing

The general form of a basic (sin or cos) trigonometric equation is shown in (6.1.1). See (and play around with) this
Desmos page to learn the meanings of the parameters a, b, c, d.

fx)=asin(b(x+c))+d (6.1.1)

12Note that if @ = b, then this equation becomes the equation of a circle with radius a


https://www.desmos.com/calculator/lsqv5fbsnu
https://saylordotorg.github.io/text_intermediate-algebra/s11-04-hyperbolas.html
https://www.desmos.com/calculator/wkfvucu6o4

+ - 8« s

a: amplitude: distance from midde y value to
max value (peak) and min value (trough)

b: period = 2°pib (for sin and cos); note that for
tangent, period = pilb

c: phase shift (horizontal)
d: vertical shift (middle y value)

y=asin(b(x—c))+d

Qe

y=acos(b(x—c))+d

y=atan(b(x—c))+d

a=1

'ID HC? “® 1®

Figure 7: General trig graph

6.2 csc, sec, cot

I recommend memorizing (6.2.1) and (6.2.2) using that csc starts with ¢ and goes with sin (which starts with the other
letter, s), and similar for sec and cos.

1
csc = —— (6.2.1)
sinf
secl = (6.2.2)
cos0
cotf = - = 9089 6.2.3)
" tan®  sin6 o

6.3 Law of sines

(6.3.1) and (6.4.1) follow the normal convention of uppercase-lowercase letter pairs. The uppercase letter represents
an angle, and the corresponding lowercase letter is the opposite side. Note that these laws apply for all triangles, not
just right triangles.

sinA sinB sinC

6.3.1

a b c ( )

6.4 Law of cosines

Note that the Pythagorean formula is a special case of (6.4.1) in which C =90° (i.e. in a right triangle).
?=a®+b*>-2abcosC (6.4.1)

6.5 Necessary identities

(6.5.1) comes from applying the Pythagorean formula a? + b> = ¢? to the point at arbitrary 6 on the unit circle, and
(6.5.2) and (6.5.3) come from angle sum identities or from reasoning about the point at an arbitrary angle 6 and -0 on
the unit circle. See Figure 8 and [Wei22c].

Definition 6.5.1: Pythagorean identity

sin®6 +cos?6 =1 (6.5.1)

10



Definition 6.5.2: sin is an odd function

sin(—0) = —sin@ (6.5.2)

Definition 6.5.3: cos is an even function

cos(—0) = cos@ (6.5.3)

1
EX

_~£mse , Sin 6)
/

/
I/
/
/f'
1\9
/-8

\

.\\
(Y

|

(ws(-0) sin(- 8))
= (ws® ,-sing)

3t
2

Figure 8: Setups for proving the above identities

7 Complex numbers

The general form of a complex number, usually denoted z, is z = a+ bi, a,b e R.
Note the set of real numbers is a subset of the set of complex numbers: Rc C. In genera, NcZcQcRcC.

7.1 Addition and subtraction

(a+bi)+(c+di)=(a+c)+ (b+d)i (7.1.1)

11



(a+bi)—(c+di)=(a-c)+(b-aAd)i (7.1.2)

7.2 Multiplication

Note that (7.2.1) should not be memorized. Simply apply the distributive property and use that i? = (v/-1)? = —1. Also,
if given numbers (not variables), you can and probably should use your TI calculator '3 to evaluate the multiplication.

(a+ bi)(c+di)=(ac—bd) + (ad + bc)i (7.2.1)

7.3 Complex plane

Complex numbers can be graphed on the complex plane, which is just the Cartesian plane but with imaginary num-
bers on the vertical axis. See Figure 9. This definition allows us to compute distances between complex numbers on
the complex plane using the distance formula. Of course, the midpoint formula also holds.

Though it’s not tested, see [Wei22a] for an explanation of one of the most beautiful equations in math, em+1=0.

Sz}

22

21

+ -1

+ -2

+ -3i

Figure 9: Complex plane with z; =1+2j and 2, =3 +4i

13} can be typed by pressing 2nd and then . (on the numpad)

12



Problem 7.3.1: Distance on complex plane

Compute the distance between z; and z in Figure 9 above. Also, compute the midpoint of z; and z;.

Solution. The distance is /(3 —1)2 + (4 —2)2 = /8. The midpoint is % + %i =2+3i. [ |

7.4 Conjugate

The conjugate of a+ bi is a— bi. Also, note that (a+ bi)(a— bi) = a + b*. Similar to a*> — b*> = (a— b)(a+ b), multiplying
a complex number by its conjugate cancels terms with i in the result, so the result becomes completely real-valued.
This is useful for simplifying expressions with a complex number in the denominator.

8 Sequences

A sequence has form {a, b,c...} A partial sum is the sum of part of a sequence. A series is the sum of an infinite
sequence.

8.1 Arithmetic

A finite arithmetic sequence with n terms is of the form {a,,a; + d, a; + 24, ..., a1 + (n—1)d}, where d is the common
difference. So, the n'" term is given by a; + (n - 1)d.

The sum of a finite arithmetic sequence is given by the sum of the first and last term multiplied by half of the
number of terms, 4 as shown in (8.1.1).

g(ﬁrst+last) =g(a1+a1 +(n-1)d) 8.1.1)

8.2 Geometric

A geometric sequence is of the form {a;,a;r, ayr?...}, where r is the common ratio. So, the nh term is given by
ay(d™1). There are formulas for the sums of finite and infinite geometric sequences, 15 put you don't need to memo-
rize them for the ACT®.

8.3 Recursive

I will approach recursive formulas for arithmetic/geometric sequences by example. Consider the recursive sequence
defined by a; = 10 and a;,+1 = 2a,. Following these two rules, a, = 20, asz = 40..., which is clearly a geometric se-
quence. Using Section 8.2, the explicit formula must be of the form a, = a1 (d"™1). Here, the explicit formula 16 jg
given by a, = 102" D,

However, note that if the first term is defined as ay = 10, then the explicit formula 17 would need to be a, = 10(2").

Lastly, note that whereas the explicit formula requires one evaluation to get any term, the recursive formula needs
to be applied several times to reach an arbitrary term. '® That is, the recursive formula describes how to get to term
n+1if you currently have the value of term n. It should make sense, then, that this type of recursive formula involving
multiplication has an explicit formula involving exponentiation (geometric). Likewise, this type of recursive formula
involving addition has an explicit formula involving multiplication (arithmetic).

4 Consider {1,4,7,10,13,16}. 1+16=4+13=7+10=17. Each pair has the same sum, so to get the total sum, we add the first and last terms and multiply
by the number of pairs

15 An infinite geometric series converges if r < 1

18you should verify that this formula works

17 Again, verify

18Unless you were looking for the first or second term

13



60 A 1
— (X2 —x+4)/2x+2)

40 | — 3x—1

20 +
2 ;/
= 0 /”ﬁ
_20 1
_40 1

=20 -10 0 10 20
X

Figure 10: Oblique asymptote

9 Rational functions

_ P

A rational function is a ratio of two polynomials. ! f is a rational function if it can be written in the form f(x) = 0w’

where P(x) and Q(x) are both polynomials and Q(x) is not 0.

9.1 Oblique asymptote

A rational function f(x) = % has an oblique (slanted) asymptote if the degree of its numerator is exactly one more

than the degree of its denominator. That is, deg P(x) = 1 + deg Q(x). If so, then the (linear) equation of the asymptote
is given by the quotient of P(x)/Q(x), using polynomial long division. The remainder can be ignored. See Figure 10,
noting that the quotient (remainder ignored) of (x*> — x+4)/(2x +2) is %x —1. This can be computed by the polynomial
long division method shown in this MathIsFun article.

In Figure 11, I use Mathematica, which is the most useful tool for mathematics that I know of. The software costs
money, but it may be offered for free at university.

(1= PolynomialQuotient[x"2-x+4, 2x+2, x]

X
out[1]= =1+ —
2

Figure 11: Polynomial long division using Mathematica

19This is analogous to a rational number being a ratio of two integers %, q#0

14


https://www.mathsisfun.com/algebra/polynomials-division-long.html

10 Number theory

The rest of this document has some advanced notation and is written somewhat rigorously, like math textbooks are.
Note that although these concepts are tested on the ACT®, the notation, formal definitions, and proofs are definitely
not.

However, if you plan on majoring in computer science, mathematics, physics, etc., you may see the rest of this as
a (hopefully) gentle introduction to college-level proof-based mathematics.

10.1 Basic properties

Here are some basic properties of integers that you should know.

even + even even
even + odd odd
odd + odd even
even x even even
even x odd even
odd x odd odd
negative®'*" | positive
negative®dd | negative

Figure 12: Basic properties of elements of Z

These do not need to be memorized. You can simply derive any one of these from a simple example if you forget.
20 For completeness, I'll show short proofs of two of these after introducing the necessary notation.

10.1.1 Notation

3 there exists

€ in

z the set of integers {----3,-2,-1,0,1,2,3,---}
= implies

Figure 13: Notation

For example, the following are true definitions of even and odd numbers and will be used in the below proofs: a is
even = dme Zsuchthata=2m. bisodd = 3IneZsuchthatb=2n+1.

10.1.2 Proofs

You will never need to prove anything for the ACT®, a multiple choice test, but I want to introduce proofs somewhere
in this document :)

Problem 10.1.1: even x even

Show that if @ and b are even, then ab is even.

Solution. aiseven = Im € Z such that a = 2m. Similarly, b is even = 3n € Z such that b =2n. Then ab=4mn =
2(2mn) = abis even. [ ]

Problem 10.1.2: odd x odd

Show that if @ and b are odd, then ab is odd.

20For example, if we forget the result of odd x odd, then we consider 3 x 3, for which the result is odd

15



Solution. a is odd = 3Im € Z such that a = 2m + 1. Similarly, b is odd = 3n € Z such that b = 2n+ 1. Then
ab=4mn+2m+2n+1=22mn+m+n)+1 — abis odd. [ |

10.2 Primes

For further clarification about this topic, 2! see [Ros18] section 4.3.

Definition 10.2.1: Primes

A prime is a natural number with only two factors, 1 and itself. ¢ The primes are {2,3,5,7,11...}. A composite
number is a number that is not prime.

4Note this implies 1 is not prime

10.2.1 Prime factorization

Theorem 10.2.1: Fundamental theorem of arithmetic

Every integer greater than 1 can be represented uniquely as a product of prime numbers. In other words, given
any integer n > 1, there exist unique positive integer k, distinct prime numbers p1, p2,..., Pk, and positive
integers ey, ey, ..., ex such that

n=pl'pps...pk (10.2.1)

This fact is useful for finding the greatest common factor and least common denominator.

10.2.2 Greatest common divisor

Definition 10.2.2: GCD

gcd(a, b) is the greatest number that is a factor of two numbers a and b.

By Definition 10.2.2, gcd(a, b) is the product of the common factors in the factorizations of {a, b, c.. .}. 22
Suppose the prime factorizations of a and b are a = p{' p;? ... py" and a = pfl pé’z ...pZ". 23 Then
ng(a, b) — pllnin(ﬂl;bl)p;nin(ﬂZ;bZ) . pglin(an:bn) (102'2)

And this definition is easily extended to gcd(a, b, c, .. .).

10.2.3 Least common multiple

Definition 10.2.3: LCM

lcm(a, b) is the smallest number that is a multiple of two numbers a and b.

Using the same definitions of a and b above, lcm(a, b) is

max(ay,by) ,,max(az,bz)

lem(a, b) = p! Pl .. prax(n,bn) (10.2.3)

21 And also literally anything else in discrete math, which I attempt to gently introduce through this document. This was the textbook for my own
MATH 381 course, taught by Chad Kelterborn (now a PhD student at Johns Hopkins). MATH 381 set me up for success in both of my undergraduate
degrees. The author of the textbook is formerly from AT&T Laboratories, which came from Bell Labs, which is where Unix, C, C++ and so much
more are from. Legendary!

22You should verify that this makes sense. You could also read [Ros18] page 281

23 All primes occurring in the prime factorization of a or b are included in both factorizations, with zero exponents if necessary
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10.3 Modular arithmetic

Definition 10.3.1: Binary mod operator

a mod d is defined as the remainder of a divided by d.

More formally, here is the division algorithm.?*

Theorem 10.3.1: Division algorithm

Let a be an integer and d a positive integer. Then there exist unique integers g and r, with 0 < r < d, such that
a=dq+r.

Here, d is the divisor, g is the quotient |a/ d]?5 and r is the remainder (which can be 0 but can’t be equal to d).
Modular arithmetic is useful for things that repeat cyclically. For example,

Problem 10.3.1: Repeating digits

What is the 322" digit after the decimal point in the repeating decimal 0.13572

Solution. Since the cycle is of length 4, we compute 322 mod 4 = 2. Without using a modulus function on the calcula-
tor, this can be calculated by 322 — 4| 322 ] = 2. 26 Now we find the 2" number 27 in the cycle, which is 3. ]

Problem 10.3.2: Powers of i

Where i = v—1, what is i799?

Solution. The first four powers of i, starting from 0, are {1, i, —1, —i}, and the next power is 1, so we indeed have another
cycle of length 4. To calculate i"%%, we compute 799 mod 4 = 3. Since this time we started counting from 0, the power
of i that corresponds to remainder 3 is —i, so i"%% = —i. ]

11 Graph theory

See 2022 June E26 question 45 for a literal graph theory question... this topic most likely won't be asked again for a
very long time.

For further details on Euler paths and Euler circuits, please see these slides, which prove the ideas shown below.

Anyway, an Euler path (or trail) of a graph is a path that visits each edge once. The first and last vertices of the path
are different. Figure 14 shows an example.

For an Euler path to exist, the degree (number of edges coming out of) each node must be even, except for (and
only) the start and end nodes of the path, which have odd degree. In other words, exactly two nodes have odd degree.
In Figure 14, note that B and C both have odd degree.

An Euler circuit is similar, but the start and end nodes of the path are the same, so the degree of each node must
be even. See Figure 15, and note that the graph is slightly different from the previous one.

241t isn't really an algorithm

25 | x|, pronounced “the floor of x,” denotes the largest integer less than or equal to x. For example, [1] = V2] = [1.69] = 1. Think of it as rounding
x down or ignoring its decimal digits

26This uses r = a — dq from the Division algorithm

27Note that the 15t number corresponds to remainder 1, so the 20d humber corresponds to remainder 2, as desired. The
to remainder 0.

4% number corresponds
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Euler Paths and Euler Circuits

An Euler path: BBADCDEBC

Figure 14: Euler path

Euler Paths and Euler Circuits

An Euler circuit: CDCBBADEBC

Figure 15: Euler circuit

18



References

[Ros18] Kenneth H. Rosen. Discrete Mathematics and Its Applications. McGraw Hill, eighth edition, 2018.

[Wei2la] Jesse Wei. Basic matrix concepts, 2021. https://jessewei.dev/assets/pdf/act/matrix-basics.pdf. Accessed on
May 30, 2023.

[Wei2lb] Jesse Wei. Logarithms, 2021. https://jessewei.dev/assets/pdf/act/logarithms.pdf. Accessed on May 30,
2023.

[Wei22a] Jesse Wei. Euler’s formula, 2022. https://jessewei.dev/blog/2022/eulers-formula/. Accessed on May 30,
2023.

[Wei22b] Jesse Wei. Pascal’s triangle, 2022. https://jessewei.dev/blog/2022/pascals-triangle/. Accessed on May 30,
2023.

[Wei22c] Jesse Wei. Symmetries between sin and cos, 2022. https://jessewei.dev/blog/2022/sin-cos/. Accessed on
May 30, 2023.

19


https://jessewei.dev/assets/pdf/act/matrix-basics.pdf
https://jessewei.dev/assets/pdf/act/logarithms.pdf
https://jessewei.dev/blog/2022/eulers-formula/
https://jessewei.dev/blog/2022/pascals-triangle/
https://jessewei.dev/blog/2022/sin-cos/

	Counting
	Permutations
	Combinations

	Probability
	Expected value
	Inclusion-exclusion principle

	Logarithms
	Matrices
	Multiplication
	Determinant

	Geometry
	2D Point rotation
	2D Point reflection
	Vectors
	Addition
	Scalar multiplication
	Subtraction
	Polar representation

	Angles
	Area and volume formulas
	Unit conversions in higher dimensions

	Circle properties
	Ellipse
	Hyperbola

	Trigonometry
	Graphing
	csc, sec, cot
	Law of sines
	Law of cosines
	Necessary identities

	Complex numbers
	Addition and subtraction
	Multiplication
	Complex plane
	Conjugate

	Sequences
	Arithmetic
	Geometric
	Recursive

	Rational functions
	Oblique asymptote

	Number theory
	Basic properties
	Notation
	Proofs

	Primes
	Prime factorization
	Greatest common divisor
	Least common multiple

	Modular arithmetic

	Graph theory

